Skip to content

DataPrime Glossary: Operators & Expressions

This guide provides a full glossary of all available DataPrime operators and expressions.

To hit the ground running using DataPrime and to view only our most frequently-used operators with examples, view our DataPrime Cheat Sheet.

Operators

block

The negation of filter. Filters-out all events where the condition is true. The same effect can be achieved by using filter with !(condition).

block $d.status_code >= 200 && $d.status_code <= 299         # Leave all events which don't have a status code of 2xx

The data is exposed using the following top-level fields:

  • $m -Event metadata

    • timestamp

    • severity - Possible values are VERBOSE, DEBUG, INFO, WARNING, ERROR, CRITICAL

    • priorityclass - Possible values are highmediumlow

    • logid

  • $l -Event labels

    • applicationname

    • subsystemname

    • category

    • classname

    • computername

    • methodname

    • threadid

    • ipaddress

  • $d -The user's data

bottom

No grouping variation

Limits the rows returned to a specified number and order the result by a set of expressions.

order_direction := "descending"/"ascending" according to top/bottom

bottom <limit> <result_expression1> [as <alias>] [, <result_expression2> [as <alias2>], ...] by <orderby_expression> [as alias>]

For example, the following query:

bottom 5 $m.severity as $d.log_severity by $d.duration

Will result in logs of the following form:

[
   { "log_severity": "Debug", "duration":  1000 }
   { "log_severity": "Warning", "duration": 2000 },
   ...
]

Grouping variation

Limits the rows returned to a specified number and group them by a set of aggregation expressions and order them by a set of expressions.

order_direction := "descending"/"ascending" according to top/bottom

bottom <limit> <(groupby_expression1|aggregate_function1)> [as <alias>] [, <(groupby_expression2|aggregate_function2)> [as <alias2>], ...] by <(groupby_expression1|aggregate_function1)> [as <alias>]

For example, the following query:

bottom 10 $m.severity, count() as $d.number_of_severities by avg($d.duration) as $d.avg_duration

Will result in logs of the following form:

[
   { "severity": "Warning", "number_of_severities": 50, avg_duration: 1000 },
   { "severity": "Debug", "number_of_severities":  10, avg_duration: 2000 }
   ...
]

Supported aggregation functions are listed in "Aggregation Functions" section.

choose

Leave only the keypaths provided, discarding all other keys. Fully supports nested keypaths in the output.

(choose|select) <keypath1> [as <new_keypath>],<keypath2> [as <new_keypath>],...

Examples:

choose $d.mysuperkey.myfield
choose $d.my_superkey.mykey as $d.important_value, 10 as $d.the_value_ten

convert

Convert the data types of keys.

The datatypes keyword is optional and can be used for readability.

(conv|convert) [datatypes] <keypath1>:<datatype1>,<keypath2>:<datatype2>,...

Examples:

convert $d.level:number
conv datatypes $d.long:number,$d.lat:number
convert $d.data.color:number,$d.item:string

count

Returns a single row containing the number of rows produced by the preceding operators.

count [into <keypath>]

An alias can be provided to override the keypath the result will be written to.

For example, the following part of a query

count into $d.num_rows

will result in a single row of the following form:

{ "num_rows": 7532 }

countby

Returns a row counting all the rows grouped by the expression.

countby <expression> [as <alias>] [into <keypath>]

An alias can be provided to override the keypath the result will be written into.

For example, the following part of a query

countby $d.verb into $d.verb_count

will result in a row for each group.

It is functionally identical to

groupby $data.verb calculate count() as $d.verb_count

create

Create a new key and set its value to the result of the expression. Key creation is granular, meaning that parent keys in the path are not overwritten.

  (a|add|c|create) <keypath> from <expression> [on keypath exists (fail|skip|overwrite)] [on keypath missing (fail|create|skip)] [on datatype change (skip|fail|overwrite)

The creation can be controlled by adding the following clauses:

  • Adding on keypath exists allows to choose what to do when the keypath already exists.

  • overwrite - Overwrites the old value. This is the default value

  • fail - Fails the query

  • skip - Skips the creation of the key

  • Adding on keypath missing allows to choose what to do when the new keypath does not exist.

  • create - Creates the key. This is the default value

  • fail - Fails the query

  • skip - Skips the creation of the new key

  • Adding on datatype changed allows to choose what to do if the key already exists and the new data changes the datatype of the value

  • overwrite - Overwrites the value anyway. This is the default value

  • fail - Fails the query

  • skip - Leaves the key with the original value (and type)

Examples:

create $d.radius from 100+23
c $d.log_data.truncated_message from $d.message.substring(1,50)
c $data.trimmed_name from $data.username.trim()

create $d.temperature from 100*23 on datatype changed skip

distinct

Returns one row for each distinct combination of the provided expressions.

distinct <expression> [as <alias>] [, <expression_2> [as <alias_2>], ...]

This operator is functionally identical to groupby without any aggregate functions.

enrich

Enrich your logs using additional context from a lookup table.

Upload your lookup table using the Data Flow > Data Enrichment > Custom Enrichment section.
For more details, see Custom Enrichment documentation.

enrich <value_to_lookup> into <enriched_key> using <lookup_table>
  • value_to_lookup - A string expression that will be looked up in the lookup table.

  • enriched_key - Destination key to store the enrichment result in.

  • lookup_table - The name of the Custom Enrichment table to be used.

The table's columns will be added as sub-keys to the destination key. If value_to_lookup is not found, the destination key will be null.
You can then filter the results using the DataPrime capabilities, such as filtering logs by specific value in the enriched field.

Example:

The original log:

{
    "userid": "111",
    ...
}

The Custom Enrichment lookup table called my_users:

IDNameDepartment
111JohnFinance
222EmilyIT

Running the following query:

enrich $d.userid into $d.user_enriched using my_users

Gives the following enriched log:

{
    "userid": "111",
    "user_enriched": {
        "ID": "111",
        "Name": "John",
        "Department": "Finance"
    },
    ...
}

Notes:

  • Run the DataPrime query source <lookup_table> to view the enrichment table.

  • If the original log already contains the enriched key:

    • If <value_to_lookup> exists in the <lookup_table>, the sub-keys will be updated with the new value. If the <value_to_lookup> does not exist, their current value will remain.

    • Any other sub-keys which are not columns in the <lookup_table> will remain with their existing values.

  • All values in the <lookup_table> are considered to be strings. This means that:

    • The <value_to_lookup> must be in a string format.

    • All values are enriched in a string format. You may then convert them to your preferred format (e.g. JSON, timestamp) using the appropriate functions.

For more information, see the enrich section in the DataPrime Glossary.

extract

Extract data from some string value into a new object. Multiple extraction methods are supported.

(e|extract) <expression> into <keypath> using <extraction-type>(<extraction-params>) [datatypes keypath:datatype,keypath:datatype,...]

Here are the currently supported extraction methods, and their parameters:

  • regexp - Create a new object based on regexp capture-groups

  • e - A regular expression with names capture-groups.

Example:

extract $d.my_text into $d.my_data using regexp(e=/user (?<user>.*) has logged in/)
  • kv - Extract a new object from a string that contains key=value key=value... pairs

  • pair_delimiter - The delimiter to expect between pairs. Default is (a space)

  • key_delimiter - The delimiter to expect separating between a key and a value. Default is =.

Examples:

extract $d.text into $d.my_kvs using kv()
e $d.text into $d.my_kvs using kv(pair_delimiter=' ',key_delimiter='=')
  • jsonobject - Extract a new object from a string contains an encoded json object, potentially attempting to unescape the string before decoding it into a json

  • max_unescape_count - Max number of escaping levels to unescape before parsing the json. Default is 1. When set to 1 or more, the engine will detect whether the value contains an escaped JSON string and unescape it until its parsable or max unescape count ie exceeded.

Example:

e $d.json_message_as_str into $d.json_message using jsonobject(max_unescape_count=1)

Additional extraction methods will be supported in the future.

It is possible to provide datatype information as part of the extraction, by using the datatypes clause. For example, adding datatypes my_field:number to an extraction would cause the extract my_field keypath to be a number instead of a string. For example:

extract $d.my_msg into $d.data using kv() datatypes my_field:number

Extracted data always goes into a new keypath as an object, allowing further processing of the new keys inside that new object. For example:

# Assuming a dataset which look like that:
{ "msg": "query_type=fetch query_id=100 query_results_duration_ms=232" }
{ "msg": "query_type=fetch query_id=200 query_results_duration_ms=1001" }

# And the following DataPrime query:
source logs
  | extract $d.msg into $d.query_data using kv() datatypes query_results_duration_ms:number
  | filter $d.query_data.query_results_duration_ms > 500

# The results will contain only the second message, in which the duration is larger than 500 ms

filter

Filter events, leaving only events for which the condition evaluates to true.

(f|filter|where) <condition-expression>

Examples:

f $d.radius > 10
filter $m.severity.toUpperCase() == 'INFO'
filter $l.applicationname == 'recommender'
filter $l.applicationname == 'myapp' && $d.msg.contains('failure')

Note: Comparison with null currently works only for scalar values and will always return null on json subtrees.

groupby

Groups the results of the preceding operators by the specified grouping expressions and calculates aggregate functions for every group created.

groupby <grouping_expression> [as <alias>] [, <grouping_expression_2> [as <alias_2>], ...] [calculate]
  <aggregate_function> [as <result_keypath>]
  [, <aggregate_function_2> [as <result_keypath_2], ...]

For example, the following query:

groupby $m.severity calculate sum($d.duration)

Will result in logs of the following form:

{ "severity": "Warning", "_sum": 17045 }

The keypaths for the grouping expressions will always be under $d. Using the as keyword, we can rename the keypath for the grouping expressions and aggregation functions. The following query:

groupby $l.applicationname as $d.app calculate sum($d.duration) as $d.sum_duration

Will result in logs of the following form:

{ "app": "web-api", "sum_duration": 17045 }

Notes:

  • Supported aggregation functions are listed in "Aggregation Functions" section below.

  • When querying with the groupby operator, you can now apply an aggregation function (such asavg, max, sum) to the bucket of results. This feature gives you the power to manipulate an aggregation expression inside the expression itself, allowing you to calculate and manipulate your data simultaneously. Examples of DataPrime expressions in aggregations can be found here.

limit

Limits the output to the first <event-count> events.

limit <event-count>

Examples

limit 100

move

Move a key (including its child keys, if any) to a new location.

(m|move) <source-keypath> to <target-keypath>

Examples:

move $d.my_data.hostname to $d.my_new_data.host
m $d.kubernetes.labels to $d.my_labels

orderby / sortby / order by / sort by

Sort the data by ascending/descending order of the expression value. Ordering by multiple expressions is supported.

(orderby|sortby|order by|sort by) <expression> [(asc|desc)] , ...

Examples:

orderby $d.myfield.myfield
orderby $d.myfield.myfield:number desc
sortby $d.myfield desc

Notes:

  • Sorting numeric values can be done by casting expression to the type: e.g.<expression>: number. In some cases, this will be inferred automatically by the engine.

  • The DataPrime query engine can only sort up to 10,000 values.

redact

Replace all substrings matching a regexp pattern from some keypath value, effectively hiding the original content.

The matching keyword is optional and can be used to increase readability.

redact <keypath> [matching] /<regular-expression>/ to '<redacted_str>'
redact <keypath> [matching] <string> to '<redacted_str>'

Examples:

redact $d.mykey /[0-9]+/ to 'SOME_INTEGER'
redact $d.mysuperkey.user_id 'root' to 'UNKNOWN_USER'
redact $d.mysuperkey.user_id matchingn 'root' to 'UNKNOWN_USER'

remove

The negation of choose. Remove a keypath from the object.

r|remove <keypath1> [ "," <keypath2> ]...

Examples:

r $d.mydata.unneeded_key
remove $d.mysuperkey.service_name, $d.mysuperkey.unneeded_key

replace

Replace the value of some key with a new value.

If the replacement value changes the datatype of the keypath, the following will happen:

  • skip - The replacement will be ignored

  • fail - The query will fail

  • overwrite - The new value will overwrite the previous one, changing the datatype of the keypath

replace <keypath> with <expression> [on datatype changed skip/fail/overwrite]

Examples:

replace $d.message with null
replace $d.some_superkey.log_length_plus_10 with $d.original_log.length()+10 on datatype changed overwrite

roundtime

Rounds the time of the event into some time interval, possibly creating a new key for the result.

If source-timestamp is not provided, then $m.timestamp is used as the source timestamp.
If source-timestamp is provided, it should be of type (or cast to) timestamp.

By default, the rounded result is written back to the source keypath [source-timestamp].
If into <target-keypath> is provided, then [source-timestamp] is not modified, and the result is written to a new target-keypath.

Supported time intervals are:

  • Xns - X nanoseconds (beware of the source-timestamp's resolution)

  • Xms - X milliseconds

  • Xs - X seconds

  • Xm - X minutes

  • Xh - X hours

  • Xd - X days

And any combination of the above from bigger to smaller time unit, e.g. 1h30m15s.

roundtime [source-timestamp] to <time-interval> [into <target-keypath>]

Examples:

roundtime to 1h into $d.tm
roundtime $d.timestamp to 1h
roundtime $d.my_timestamp: timestamp to 60m
roundtime to 60s into $d.rounded_ts_to_the_minute

source

Set the data source that your DataPrime query is based on.

(source|from) <data_store>

Where <data_store> can be either:

  • logs

  • spans (supported only in the API)

  • The name of the custom enrichment. In this case, the command will display the custom enrichment table.

Examples:

source logs

top

No grouping variation

Limits the rows returned to a specified number and order the result by a set of expressions.

order_direction := "descending"/"ascending" according to top/bottom

top <limit> <result_expression1> [as <alias>] [, <result_expression2> [as <alias2>], ...] by <orderby_expression> [as alias>]

For example, the following query:

top 5 $m.severity as $d.log_severity by $d.duration

Will result in logs of the following form:

[
   { "log_severity": "Warning", "duration": 2000 },
   { "log_severity": "Debug", "duration":  1000 }
   ...
]

Grouping variation

Limits the rows returned to a specified number and group them by a set of aggregation expressions and order them by a set of expressions.

order_direction := "descending"/"ascending" according to top/bottom

top <limit> <(groupby_expression1|aggregate_function1)> [as <alias>] [, <(groupby_expression2|aggregate_function2)> [as <alias2>], ...] by <(groupby_expression1|aggregate_function1)> [as <alias>]

For example, the following query:

top 10 $m.severity, count() as $d.number_of_severities by avg($d.duration) as $d.avg_duration

Will result in logs of the following form:

[
   { "severity": "Debug", "number_of_severities":  10, avg_duration: 2000 }
   { "severity": "Warning", "number_of_severities": 50, avg_duration: 1000 },
   ...
]

Supported aggregation functions are listed in "Aggregation Functions" section.

Text Search Operators

find / text

Search for the string in a certain keypath.

(find|text) <free-text-string> in <keypath>

Examples:

find 'host1000' in $d.kubernetes.hostname
text 'us-east-1' in $d.msg

lucene

A generic lucene-compatible operator, allowing both free and wild text searches, and more complex search queries.

Field names inside the lucene query are relative to $d (the root level of user-data).

lucene <lucene-query-as-a-string>

Examples:

lucene 'pod:recommender AND (is_error:true or status_code:404)'

wildfind / wildtext

Search for the string in the entire user data. This can be used when the keypath in which the text resides is unknown.

Note: The performance of this operator is worse than when using the find/text operator. Prefer using those operators when you know the keypath to search for.

(wildfind/wildtext) <string>

Examples:

wildfind 'my-region'
wildfind ':9092'

Expressions

DataPrime supports a limited set of javascript constructs that can be used in expressions.

The data is exposed using the following top-level fields:

  • $m - Event metadata

    • timestamp

    • severity - Possible values are VERBOSE, DEBUG, INFO, WARNING, ERROR, CRITICAL

    • priorityclass - Possible values are highmediumlow

    • logid

  • $l - Event labels

    • applicationname

    • subsystemname

    • category

    • classname

    • computername

    • methodname

    • threadid

    • ipaddress

  • $d - The user's data

Field Access

Accessing nested data is done by using a keypath, similar to any programming language or json tool. Keys with special characters can be accessed using a map-like syntax, with the key string as the map index, e.g. $d.my_superkey['my_field_with_a_special/character'].

Examples:

$m.timestamp
$d.my_superkey.myfield
$d.my_superkey['my_field_with_a_special/character']
$l.applicationname

Language Constructs

All standard language constructs are supported:

  • Constants

  • Nested field access, as mentioned above

  • Basic math operations between numbers, including modulo (%)

  • Boolean operations &&||!

  • Comparisons

  • String concatenations through concat (string interpolation will be supported soon)

  • casting - A simple notation for casting data types: e.g. $d.temperature:number. Type inference is automatically applied when possible. We'll support full type-inference soon, reducing the need for casting.

Boolean expressions for text search:

  • $d.field ~ 'text phrase' - case-insensitive search for a text phrase in a specific field.

  • $d ~~ 'text phrase' - case-insensitive search for a text phrase in $d.

Scalar Functions

Various functions can be used to transform values. All functions can be called as methods as well, e.g. $d.msg.contains('x') is equivalent to contains($d.msg,'x').

String Functions

chr

chr(number: number): string

Returns the Unicode code point number as a single character string.

codepoint

codepoint(string: string): number

Returns the Unicode code point of the only character of string.

concat

concat(value: string, ...values: string): string

Concatenates multiple strings into one.

contains

contains(string: string, substring: string): bool

Returns true if substring is contained in string

endsWith

endsWith(string: string, suffix: string): bool

Returns true if string ends with suffix

indexOf

indexOf(string: string, substring: string): number

Returns the position of substring in string, or -1 if not found.

length

length(value: string): number

Returns the length of value

ltrim

ltrim(value: string): string

Removes whitespace to the left of the string value

matches

matches(string: string, regexp: regexp): bool

Evaluates the regular expression pattern and determines if it is contained within string.

pad

Alias for padLeft

pad(value: string, charCount: number, fillWith: string): string

Left pads string to charCount. If size < fillWith.length() of string, result is truncated. See padLeft for more details.

padLeft

padLeft(value: string, charCount: number, fillWith: string): string

Left pads string to charCount. If size < fillWith.length() of string, result is truncated.

padRight

padRight(value: string, charCount: number, fillWith: string): string

Right pads string to charCount. If size < fillWith.length() of string, result is truncated.

regexpSplitParts

regexpSplitParts(string: string, delimiter: regexp, index: number): string

Splits string on regexp-delimiter, returns the field at index. Indexes start with 1.

rtrim

rtrim(value: string): string

Removes whitespace to the right of the string value

splitParts

splitParts(string: string, delimiter: string, index: number): string

Splits string on delimiter, returns the field at index. Indexes start with 1.

startsWith

startsWith(string: string, prefix: string): bool

Returns true if string starts with prefix

substr

substr(value: string, from: number, length: number?): string

Returns the substring in value, from position from and up to length length

toLowerCase

toLowerCase(value: string): string

Converts value to lowercase

toUpperCase

toUpperCase(value: string): string

Converts value to uppercase

trim

trim(value: string): string

Removes whitespace from the edges of a string value

IP Functions

ipInSubnet

ipInSubnet(ip: string, ipPrefix: string): bool

Returns true if ip is in the subnet of ipPrefix.

ipPrefix

ipPrefix(ip: string, subnetSize: number): string

Returns the IP prefix of a given ip_address with subnetSize bits (e.g.: 192.128.0.0/9).

String interpolation

  • `this is an interpolated {$d.some_keypath} string` - {$d.some_keypath} will be replaced with the evaluated expression that is wrapped by the brackets

  • `this is how you escape \{ and \} and \`` - Backward slash (\) is used to escape characters like {} that are used for keypaths.

UUID Functions

isUuid

isUuid(uuid: string): bool

Returns true if uuid is valid.

randomUuid

randomUuid(): string

Returns a random UUIDv4.

uuid

Deprecated: use randomUuid instead

uuid(): string

Returns a random UUIDv4. See randomUuid for more details.

General Functions

firstNonNull

firstNonNull(value: any, ...values: any): any

Returns the first non-null value from the parameters. Works only on scalars for now.

if

if(condition: bool, then: any, else: any?): any

return either the then or else according to the result of condition

in

in(comparand: any, value: any, ...values: any): bool

Tests if the comparand is equal to any of the values in a set v1 ... vN.

recordLocation

recordLocation(): string

Returns the location of the record (e.g.: s3 URL)

Number Functions

abs

abs(number: number): number

Returns the absolute value of number

ceil

ceil(number: number): number

Rounds the value up to the nearest integer

e

e(): number

Returns the constant Euler’s number.

floor

floor(number: number): number

Rounds the value down to the nearest integer

fromBase

fromBase(string: string, radix: number): number

Returns the value of string interpreted as a base-radix number.

ln

ln(number: number): number

Returns the natural log of number

log

log(base: number, number: number): number

Returns the log of number in base base

log2

log2(number: number): number

Returns the log of number in base 2. Equivalent to log(2, number)

max

max(value: number, ...values: number): number

Returns the largest number of all the numbers passed to the function

min

min(value: number, ...values: number): number

Returns the smallest number of all the numbers passed to the function

mod

mod(number: number, divisor: number): number

Returns the modulus (remainder) of number divided by divisor.

pi

pi(): number

Returns the constant Pi.

power

power(number: number, exponent: number): number

Returns number^exponent

random

random(): number

Returns a pseudo-random value in the range 0.0 <= x < 1.0.

randomInt

randomInt(upperBound: number): number

Returns a pseudo-random integer number between 0 and n (exclusive)

round

round(number: number, digits: number?): number

Round number to digits decimal places

sqrt

sqrt(number: number): number

Returns square root of a number.

toBase

toBase(number: number, radix: number): string

Returns the base-radix representation of number.

URL Functions

urlDecode

urlDecode(string: string): string

Unescapes the URL encoded in string.

urlEncode

urlEncode(string: string): string

Escapes string by encoding it so that it can be safely included in URL.

Date / Time Functions

Functions for processing timestamps, intervals and other time-related constructs.

Time Units

Many date/time functions accept a time unit argument to tweak their behaviour. Dataprime supports time units from nanoseconds to days. They are represented as literal strings of the time unit name in either long or short notation:

  • long notation: 'day''hour''minute''second''milli''micro''nano'

  • short notation: 'd''h''m''s''ms''us''ns'

Time Zones

Dataprime timestamps are always stored in the UTC time zone, but some date/time functions accept a time zone argument to tweak their behaviour. Time zone arguments are strings that specify a time zone offset, shorthand or identifier:

  • time zone offset in hours (e.g. '+01' or '-02')

  • time zone offset in hours and minutes (e.g. '+0130' or '-0230')

  • time zone offset in hours and minutes with separator (e.g. '+01:30' or '-02:30')

  • time zone shorthand (e.g. 'UTC''GMT''EST', etc.)

  • time zone identifier (e.g. 'Asia/Yerevan''Europe/Zurich''America/Winnipeg', etc.)

addInterval

addInterval(left: interval, right: interval): interval

Adds two intervals together. Works also with negative intervals. Equivalent to left + right.

addTime

addTime(t: timestamp, i: interval): timestamp

Adds an interval to a timestamp. Works also with negative intervals. Equivalent to t + i.

diffTime

diffTime(to: timestamp, from: timestamp): interval

Calculates the duration between two timestamps. Positive if to > from, negative if to < from. Equivalent to to - from.

extractTime

extractTime(timestamp: timestamp, unit: dateunit | timeunit, tz: string?): number

Extracts either a date or time unit from a timestamp. Returns a floating point number for time units smaller than a 'minute', otherwise an integer. Date units such as 'month' or 'week' start from 1 (not from 0).

Function parameters:

  • timestamp (required) - the timestamp to extract from.

  • unit (required) - the date or time unit to extract. Must be a string literal and one of:

    • any time unit in either long or short notation

    • a date unit in long notation: 'year''month''week''day_of_year''day_of_week'

    • a date unit in short notation: 'Y''M''W''doy''dow'

  • tz (optional) - a time zone to convert the timestamp before extracting.

Example 1: extract the hour in Tokyo

limit 1 | choose $m.timestamp.extractTime('h', 'Asia/Tokyo') as h # Result 1: 11pm { "h": 23 }

Example 2: extract the number of seconds

limit 1 | choose $m.timestamp.extractTime('second') as s # Result 2: 38.35 seconds { "s": 38.3510265 }

Example 3: extract the timestamp's month

limit 1 | choose $m.timestamp.extractTime('month') as m # Result 3: August { "m": 8 } 

Example 4: extract the day of the week

limit 1 | choose $m.timestamp.extractTime('dow') as d # Result 4: Tuesday { "d": 2 }

formatInterval

formatInterval(interval: interval, scale: timeunit?): string

Formats interval to a string with an optional time unit scale.

Function parameters:

  • interval (required) - the interval to format.

  • scale (optional) - the largest time unit of the interval to show. Defaults to nano.

Example:

limit 3 | choose formatInterval(now() - $m.timestamp, 's') as i # Results: { "i": "122s261ms466us27ns" } { "i": "122s359ms197us227ns" } { "i": "122s359ms197us227ns" }

formatTimestamp

formatTimestamp(timestamp: timestamp, format: string?, tz: string?): string

Formats a timestamp to a string with an optional format specification and destination time zone.

Function parameters:

  • timestamp (required) - the timestamp to format.

  • format (optional) - a date/time format specification for parsing timestamps. Defaults to 'iso8601'. The format can be any string with embedded date/time formatters, or one of several shorthands. Here are a few samples:

    • '%Y-%m-%d' - print the date only, e.g. '2023-04-05'

    • '%H:%M:%S' - print the time only, e.g. '16:07:33'

    • '%F %H:%M:%S' - print both date and time, e.g. '2023-04-05 16:07:33'

    • 'iso8601' - print a timestamp in ISO 8601 format, e.g. '2023-04-05T16:07:33.123Z'

    • 'timestamp_milli' - print a timestamp in milliseconds (13 digits), e.g. '1680710853123'

  • tz (optional) - the destination time zone to convert the timestamp before formatting.

Example 1: print a timestamp with default format and +5h offset

limit 1 | choose $m.timestamp.formatTimestamp(tz='+05') as ts # Result 1: { "ts": "2023-08-29T19:08:37.405937400+0500" }

Example 2: print only the year and month

limit 1 | choose $m.timestamp.formatTimestamp('%Y-%m') as ym # Result 2: { "ym": "2023-08" } 

Example 3: print only the hours and minutes

limit 1 | choose $m.timestamp.formatTimestamp('%H:%M') as hm # Result 3: { "hm": "14:11" }

Example 4: print a timestamp in milliseconds (13 digits)

limit 1 | choose $m.timestamp.formatTimestamp('timestamp_milli') as ms # Result 4: { "ms": "1693318678696" }

fromUnixTime

fromUnixTime(unixTime: number, timeUnit: timeunit?): timestamp

Converts a number of a specific time units since the UNIX epoch to a timestamp (in UTC). The UNIX epoch starts on January 1, 1970 - earlier timestamps are represented by negative numbers.

Function parameters:

  • unixTime (required) - the amount of time units to convert. Can be either positive or negative and will be rounded down to an integer.

  • timeUnit (optional) - the time units to convert. Defaults to 'milli'.

Example:

limit 1 | choose fromUnixTime(1658958157515, 'ms') as ts # Result: { "ts": 1658958157515000000 }

multiplyInterval

multiplyInterval(i: interval, factor: number): interval

Multiplies an interval by a numeric factor. Works both with integer and fractional numbers. Equivalent to i * factor

now

now(): timestamp

Returns the current time at query execution time. Stable across all rows and within the entire query, even when used multiple times. Nanosecond resolution if the runtime supports it, otherwise millisecond resolution.

Example:

limit 3 | choose now() as now, now() - $m.timestamp as since # Results: { "now": 1693312549105874700, "since": "14m954ms329us764ns" } { "now": 1693312549105874700, "since": "14m954ms329us764ns" } { "now": 1693312549105874700, "since": "14m960ms519us564ns" }

parseInterval

parseInterval(string: string): interval

Parses an interval from a string with format NdNhNmNsNmsNusNns where N is the amount of each time unit. Returns null when the input does not match the expected format:

  • It consists of time unit components - a non-negative integer followed by the short time unit name. Supported time units are: 'd''h''m''s''ms''us''ns'.

  • There must be at least one time unit component.

  • The same time unit cannot appear more than once.

  • Components must be decreasing in time unit order - from days to nanoseconds.

  • It can start with - to represent negative intervals.

Example 1: parse a zero interval

limit 1 | choose '0s'.parseInterval() as i # Result 1: { "i": "0ns" }

Example 2: parse a positive interval

limit 1 | choose '1d48h0m'.parseInterval() as i # Result 2: { "i": "3d" } 

Example 3: parse a negative interval

limit 1 | choose '-5m45s'.parseInterval() as i # Result 3: { "i": "-5m45s" }

parseTimestamp

parseTimestamp(string: string, format: string?, tz: string?): timestamp

Parses a timestamp from string with an optional format specification and time zone override. Returns null when the input does not match the expected format.

Function parameters:

  • string (required) - the input from which the timestamp will be extracted.

  • format (optional) - a date/time format specification for parsing timestamps. Defaults to 'auto'. The format can be any string with embedded date/time extractors, one of several shorthands, or a cascade of formats to be attempted in sequence. Here are a few samples:

    • '%Y-%m-%d' - parse date only, e.g. '2023-04-05'

    • '%F %H:%M:%S' - parse date and time, e.g. '2023-04-05 16:07:33'

    • 'iso8601' - parse a timestamp in ISO 8601 format, e.g. '2023-04-05T16:07:33.123Z'

    • 'timestamp_milli' - parse a timestamp in milliseconds (13 digits), e.g. '1680710853123'

    • '%m/%d/%Y|timestamp_second' - parse either a date or a timestamp in seconds, in that order

  • tz (optional) - a time zone override to convert the timestamp while parsing. This parameter will override any time zone present in the input. A time zone can be extracted from the string by using an appropriate format and omitting this parameter.

Example 1: parse a date with the default format

limit 1 | choose '2023-04-05'.parseTimestamp() as ts # Result 1: { "ts": 1680652800000000000 }

Example 2: parse a date in US format

limit 1 | choose '04/05/23'.parseTimestamp('%D') as ts # Result 2: { "ts": 1680652800000000000 } 

Example 3: parse date and time with units

limit 1 | choose '2023-04-05 16h07m'.parseTimestamp('%F %Hh%Mm') as ts # Result 3: { "ts": 1680710820000000000 } 

Example 4: parse a timestamp in seconds (10 digits)

limit 1 | choose '1680710853'.parseTimestamp('timestamp_second') as ts # Result 4: { "ts": 1680710853000000000 }

parseToTimestamp

Deprecated: use parseTimestamp instead

parseToTimestamp(string: string, format: string?, tz: string?): timestamp

Parses a timestamp from string with an optional format specification and time zone override. See parseTimestamp for more details.

roundInterval

roundInterval(interval: interval, scale: timeunit): interval

Rounds an interval to a time unit scale. Smaller time units will be zeroed out.

Function parameters:

  • interval (required) - the interval to round.

  • scale (required) - the largest time unit of the interval to keep.

Example:

limit 1 | choose 2h5m45s.roundInterval('m') as i # Result: { "i": "2h5m" }

roundTime

roundTime(date: timestamp, interval: interval): timestamp

Rounds a timestamp to the given interval. Useful for bucketing, e.g. rounding to 1h for hourly buckets. Equivalent to date / interval.

Example:

groupby $m.timestamp.roundTime(1h) as bucket count() as n # Results: { "bucket": "29/08/2023 15:00:00.000 pm", "n": 40653715 } { "bucket": "29/08/2023 14:00:00.000 pm", "n": 1779386 }

subtractInterval

subtractInterval(left: interval, right: interval): interval

Subtracts one interval from another. Equivalent to addInterval(left, -right) and left - right.

subtractTime

subtractTime(t: timestamp, i: interval): timestamp

Subtracts an interval from a timestamp. Equivalent to addTime(t, -i) and t - i.

timeRound

Deprecated: use roundTime instead

timeRound(date: timestamp, interval: interval): timestamp

Rounds a timestamp to the given interval. See roundTime for more details.

toInterval

toInterval(number: number, timeUnit: timeunit?): interval

Converts a number of specific time units to an interval. Works with both integer / floating point and positive / negative numbers.

Function parameters:

  • number (required) - the amount of time units to convert.

  • timeUnit (optional) - Time units to convert. Defaults to nano.

Example 1: convert a floating point number

limit 1 | choose 2.5.toInterval('h') as i # Result 1: { "i": "2h30m" } # Example 2: convert an integer number limit 1 | choose -9000.toInterval() as i # Result 2: { "i": "-9us" }

toIso8601DateTime

Deprecated

toIso8601DateTime(timestamp: timestamp): string

Alias to formatTimestamp(timestamp, 'iso8601').

Formats timestamp to an ISO 8601 string with nanosecond output precision.

Example:

limit 1 | choose $m.timestamp.toIso8601DateTime() as ts # Result: { "ts": "2023-08-11T07:29:17.634Z" }

toUnixTime

toUnixTime(timestamp: timestamp, timeUnit: timeunit?): number

Converts timestamp to a number of specific time units since the UNIX epoch (in UTC). The UNIX epoch starts on January 1, 1970 - earlier timestamps are represented by negative numbers.

Function parameters:

  • timestamp (required) - the timestamp to convert.

  • timeUnit (optional) - the time units to convert to. Defaults to 'milli'.

Example:

limit 1 | choose $m.timestamp.toUnixTime('hour') as hr # Result: { "hr": 470363 }

Encoding / Decoding Functions

decodeBase64

decodeBase64(value: string): string

Decode a base-64 encoded string

encodeBase64

encodeBase64(value: string): string

Encode a string into base-64

Case Expressions

Case expressions are special constructs in the language that allow choosing between multiple options in an easy manner and in a readable way. They can be wherever an expression is expected.

case

Choose between multiple values based on several generic conditions. Resort to a default-value if no condition is met.

case {
  condition1 -> value1,
  condition2 -> value2,
  ...
  conditionN -> valueN,
  _          -> <default-value>
}

Example:

case {
  $d.status_code == 200 -> 'success',
  $d.status_code == 201 -> 'created',
  $d.status_code == 404 -> 'not-found',
  _ -> 'other'
}

# Here's the same example inside the context of a query. A new field is created with the `case` result,
# and then a filter will be applied, leaving only non-successful responses.

source logs | ... | create $d.http_response_outcome from case {
  $d.status_code == 200 -> 'success',
  $d.status_code == 201 -> 'created',
  $d.status_code == 404 -> 'not-found',
  _                     -> 'other'
} | filter $d.http_response_outcome != 'success'

case_contains

A shorthand for case which allowing checking if a string s contains one of several substrings without repeating the expression leading to s. The chosen value is the first which matches s.contains(substring).

case_contains {
  s: string,
  substring1 -> result1,
  substring2 -> result2,
  ...
  substring3 -> resultN
}

Example:

case_contains {
  $l.subsystemname,
  '-prod-' -> 'production',
  '-dev-'  -> 'development',
  '-stg-'  -> 'staging',
  _        -> 'test'
}

case_equals

A shorthand for case which allowing comparing some expression e to several results without repeating the expression. The chosen value is the first which matches s == value

case_equals {
  e: any,
  value1 -> result1,
  value2 -> result2,
  ...
  valueN -> resultN
}

Example:

case_equals {
  $m.severity,
  'info'   -> true,
  'warning -> true,
  _        -> false
}

case_greaterthan

A shorthand for case which allows comparing n to multiple values without repeating the expression leading to n. The chosen value is the first which matches expression > value.

case_greaterthan {
  n: number,
  value1: number -> result1,
  value2: number -> result2,
  ...
  valueN: number -> resultN,
  _              -> <default-value>
}

Example:

case_greaterthan {
  $d.status_code,
  500 -> 'server-error',
  400 -> 'client-error',
  300 -> 'redirection',
  200 -> 'success',
  100 -> 'information',
  _   -> 'other'
}

case_lessthan

A shorthand for case which allows comparing a number n to multiple values without repeating the expression leading to n. The chosen value is the first which matches expression < value.

case_lessthan {
  n: number,
  value1: number -> result1,
  value2: number -> result2,
  ...
  valueN: number -> resultN,
  _              -> <default-value>
}

Example:

case_lessthan {
  $d.temperature_celsius,
  10 -> 'freezing',
  20 -> 'cold',
  30 -> 'fun',
  45 -> 'hot',
  _  -> 'burning'
}

Aggregation Functions

any_value

Returns any non-null expression value in the group. If expression is not defined, it defaults to the $data object.

any_value(expression: any?)

Returns null if all expression values in the group are null.

Example:

groupby $m.severity calculate any_value($d.url)

avg

Calculates the average value of a numerical expression in the group.

avg(expression: number)

Example:

groupby $m.severity calculate avg($d.duration) as average_duration

count

Counts non-null expression values. If expression is not defined, all rows will be counted.

count(expression: any?) [into <keypath>]

An alias can be provided to override the keypath the result will be written to.

For example, the following part of a query

count() into $d.num_rows

will result in a single row of the following form:

{ "num_rows": 7532 }

count_if

Counts non-null expression values on rows which satisfy condition. If expression is not defined, all rows that satisfy condition will be counted.

count_if(condition: bool, expression: any?)

Example:

groupby $m.severity calculate count_if($d.duration > 500) as $d.high_duration_logs
groupby $m.severity calculate count_if($d.duration > 500, $d.company_id) as $d.high_duration_logs

distinct_count

Counts non-null distinct expression values.

distinct_count(expression: any)

Example:

groupby $l.applicationname calculate distinct_count($d.username) as active_users

distinct_count_if

Counts non-null distinct expression values on rows which satisfy condition.

distinct_count_if(condition: bool, expression: any)

Example:

groupby $l.applicationname calculate distinct_count_if($m.severity == 'Error', $d.username) as users_with_errors

max

Calculates the maximum value of a numerical expression in the group.

max(expression: number | timestamp)

Example:

groupby $m.severity calculate max($d.duration)

min

Calculates the minimum value of a numerical expression in the group.

min(expression: number | timestamp)

Example:

groupby $m.severity calculate min($d.duration)

percentile

Calculates the approximate n-th percentile value of a numerical expression in the group.

percentile(percentile: number, expression: number, error_threshold: number?)

Since the percentile calculation is approximate, the accuracy may be controlled with the error_threshold parameter which ranges from 0 to 1 (defaults to 0.01). A lower value will result in better accuracy at the cost of longer query times.

Example:

groupby $m.severity calculate percentile(0.99, $d.duration) as p99_latency

sample_stddev

Computes the sample standard deviation of a numerical expression in the group.

sample_stddev(expression: number)

Example:

groupby $m.severity calculate sample_stddev($d.duration)

sample_variance

Computes the variance of a numerical expression in the group.

sample_variance(expression: number)

Example:

groupby $m.severity calculate sample_variance($d.duration)

stddev

Computes the standard deviation of a numerical expression in the group.

stddev(expression: number)

Example:

groupby $m.severity calculate stddev($d.duration)

sum

Calculates the sum of a numerical expression in the group.

sum(expression: number)

Example:

groupby $m.severity calculate sum($d.duration) as total_duration

variance

Computes the variance of a numerical expression in the group.

variance(expression: number)

Example:

groupby $m.severity calculate variance($d.duration)

DP Expressions in Aggregations

When querying with the groupby operator, you can now apply an aggregation function (such asavg, max, sum) to the bucket of results. This feature gives you the power to manipulate an aggregation expression inside the expression itself, allowing you to calculate and manipulate your data simultaneously.

Example 1

This examples takes logs which have some connect_duration and batch_duration fields, and calculates the ratio between the averages of those durations, per region.

# Query
source logs 
  | groupby region aggregate avg(connect_duration) / avg(batch_duration)

Example 2

This query calculates the percentage of logs which don’t have a kubernetes_pod_name out of the total number of logs. The calculation is done per subsystem.

# Query
source logs 
| groupby $l.subsystemname aggregate
  sum(if(kubernetes.pod_name != null,1,0)) / count() as pct_without_pod_name

Example 3

This query calculates the ratio between the maximum and minimum salary per department, and provides a Based on N Employees string as an additional column per row.

# Query
source logs
| groupby department_id aggregate
    max(salary) / min(salary) as salary_ratio
    `Based on {count()} Employees`)

Example 4

This query calculates the ratio between error logs and info logs.

source logs
| groupby $m.timestamp / 1h as hour aggregate 
    count_if($m.severity == '5') / count_if($m.severity == '3') as error_to_info_ratio

Support

Need help?

Our world-class customer success team is available 24/7 to answer any questions that may come up.

Feel free to reach out to us via our in-app chat or by sending us an email at [email protected].